ECE 307-Techniques for Engineering Decisions

Lecture 7. Hungarian Method

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

ASSIGNMENT PROBLEM

\square We are given
n machines $M_{1}, M_{2}, \ldots, M_{n} \leftrightarrow i$
n jobs $\quad J_{1}, J_{2}, \ldots, J_{n} \leftrightarrow j$
$C_{i j}=\left\{\begin{array}{l}\cos t \text { of doing job } j \text { on machine } i \text { whenever possible } \\ Q \gg 0 \text { if job } j \text { cannot be done on machine } i\end{array}\right.$
\square Each machine can only do one job and each job
requires one machine

ASSIGNMENT PROBLEM

We wish to determine the optimal match, i.e., the assignment with the lowest total costs of doing
the n jobs on the n machines
The brute force approach is simply enumeration:
consider $\boldsymbol{n}=10$ and there are $3,628,800$ possible
choices!

SOLUTION APPROACH

We can, however, introduce categorical decision variables

$$
x_{i j}= \begin{cases}1 & j o b j \text { is assigned to machine } i \\ 0 & \text { otherwise }\end{cases}
$$

And the constraints can be stated as

$$
\begin{aligned}
& \sum_{j=1}^{n} x_{i j}=1 \quad \forall i \text { each machine does exactly one job } \\
& \sum_{i=1}^{n} x_{i j}=1 \quad \forall j \text { each job is assigned to only one machine }
\end{aligned}
$$

SOLUTION APPROACH

\square The assignment problem, then, is formulated as

$$
\min Z=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

s.t.

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i j}=1 & \forall i \\
\sum_{i=1}^{n} x_{i j}=1 & \forall j \\
x_{i j} \in\{0,1\} & \forall i, j
\end{array}
$$

\square Thus, the assignment problem can be viewed as a special case of the transportation problem

COST MATRIX

$\underbrace{}_{\text {mach } i}{ }^{j o b} j$	J_{1}	J_{2}	\cdots	J_{n}	supplies
M_{1}	χ_{11}	χ_{12}	...	$x_{1 n}$	1
	c_{11}	c_{12}		$c_{1 n}$	
M_{2}	X_{21}	${ }^{2}$...	$\boldsymbol{x}_{2 \mathrm{n}}$	1
	c_{21}	c_{22}		$c_{2 n}$	
!	\cdots	...	\cdots	...	:
M_{n}	$X_{n 1}$	$x_{n 2}$	\ldots	$\boldsymbol{x}_{n n}$	1
	$c_{n 1}$	$c_{n 2}$		$c_{n n}$	
demands	1	1	...	1	

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SIMPLIFIED COST MATRIX

\square Since demands and supplies are $\mathbf{1}$ for all assignment problems, we represent the assignment problem by the cost matrix below

machi $i_{\text {job } j}^{j}$	J_{1}	J_{2}	\cdots	J_{n}
M_{1}	c_{11}	c_{12}	\cdots	$c_{1 n}$
M_{2}	c_{21}	c_{22}	\cdots	$c_{2 n}$
\ldots	\cdots	\cdots	\cdots	\cdots
M_{n}	$c_{n 1}$	$c_{n 2}$	\cdots	$c_{n n}$

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

HISTORY OF HUNGARIAN METHOD

- First published by Harold Kuhn in 1955

Based on the earlier work of the two Hungarian
mathematicians, Dénes König and Jenö Egerváry

IMPORTANT FACT

\square We consider the two STPs below

$$
\min Z=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

st.

$$
\min \tilde{Z}=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}-k
$$

sot.

\square If $x_{i j}^{*} \leq 1$ for $i, j \leq n$ optimizes problem (i), then $x_{i j}^{*} \leq 1$ for $1 \leq i, j \leq n$ also optimizes problem (ii)

BASIC IDEA

\square The fact ensures that the optimal assignment is
not affected by a constant added or subtracted
from any row of the original assignment cost matrix, and because for any $1 \leq \boldsymbol{q} \leq \boldsymbol{n}$

$$
\tilde{Z}=\sum_{j=1}^{n}\left(c_{q j}-k\right) x_{q j}+\sum_{\substack{i=1 \\ i \neq q}}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}-k \sum_{j=1}^{n} x_{q j}
$$

$$
=Z-k
$$

\square A similar statement holds for each column of the
cost matrix for a similar reason

BASIC IDEA

\square If all the elements of the cost matrix are
nonnegative, then the objective is nonnegative

If the objective is nonnegative, and there exists a
feasible solution whose total cost is zero, then the
feasible solution is the optimal solution

THE HUNGARIAN METHOD

\square For each row i, we consider the elements $c_{i j}$ and evaluate

$$
\underline{c}_{i}=\min \left\{c_{i j}, 1 \leq j \leq n\right\}
$$

and subtract $\underline{c}_{\boldsymbol{i}}$ from each element in row \boldsymbol{i} to get

$$
\tilde{c}_{i j}=c_{i j}-\underline{c}_{i}, 1 \leq j \leq n
$$

\square Then, we repeat the same procedure for each column
\square We try to assign jobs only using the machines with zero costs since such an assignment, whenever possible, is then optimal

EXAMPLE 1 : COST DATA

$j o b j$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	10	9	8	7
M_{2}	3	4	5	6
M_{3}	2	1	1	2
M_{4}	4	3	5	6

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE 1 : ROW 1 OPERATION

$j o b j$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	10	9	8	7
M_{2}	3	4	5	6
M_{3}	2	1	1	2
M_{4}	4	3	5	6

EXAMPLE 1 : ROW 1 OPERATION

$j o b j$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	1	0
M_{2}	3	4	5	6
M_{3}	2	1	1	2
M_{4}	4	3	5	6

EXAMPLE 1 : ROW 2 OPERATION

$j o b j$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	1	0
M_{2}	3	4	5	6
M_{3}	2	1	1	2
M_{4}	4	3	5	6

EXAMPLE 1 : ROW 2 OPERATION

$M_{\text {mach } i}^{\text {job } j}$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	1	0
M_{2}	0	1	2	3
M_{3}	2	1	1	2
M_{4}	4	3	5	6

EXAMPLE 1 : ROW 3 OPERATION

$j o b j$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	1	0
M_{2}	0	1	2	3
M_{3}	2	1	1	2
M_{4}	4	3	5	6

EXAMPLE 1 : ROW 3 OPERATION

$j o b j$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	1	0
M_{2}	0	1	2	3
M_{3}	1	0	0	1
M_{4}	4	3	5	6

EXAMPLE 1 : ROW 4 OPERATION

$M_{\text {mach } i}^{\text {job } j}$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	1	0
M_{2}	0	1	2	3
M_{3}	1	0	0	1
M_{4}	4	3	5	6

EXAMPLE 1 : ROW 4 OPERATION

$M_{\text {mach } i}^{\text {job } j}$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	1	0
M_{2}	0	1	2	3
M_{3}	1	0	0	1
M_{4}	1	0	2	3

EXAMPLE 1 : FEASIBLE SOLUTION

$j o b j$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	1	0
M_{2}	0	1	2	3
M_{3}	1	0	0	1
M_{4}	1	0	2	3

EXAMPLE 1 : FEASIBLE SOLUTION

$j o b j$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	1	0
M_{2}	0	1	2	3
M_{3}	1	0	0	1
M_{4}	1	0	2	3

HUNGARIAN METHOD

I In general, a feasible assignment using only cells with zero costs may not exist, after we completed the single row and column subtractions
\square In such cases, we need to draw a minimum number of lines through certain rows and columns to cover all the cells with zero cost
\square The minimum number of lines needed is the maximum number of jobs that can be assigned to the zero cells subject to all the constraints, a result that was proved by König

HUNGARIAN METHOD

Then, we look up the submatrix that is not covered
by the lines to determine the smallest cost
element
\square Subtract from each element of the submatrix consisting of the rows and columns that are not crossed out the value of the smallest element and add the value to all elements at the intersection of two lines

HUNGARIAN METHOD

The rationale for this operation is that we subtract
the smallest value from each element in a row
including any element that is covered by a line; to
compensate we need to add an equal value to the element covered by the intersection of two lines and therefore the operation keeps the value of the elements not at an intersection unchanged

EXAMPLE 2 : COST DATA

$M_{\text {mach }} M_{1}$	J_{1}	J_{2}	J_{3}	J_{4}
M_{2}	5	9	7	8
M_{3}	5	4	6	5
M_{4}	2	3	4	5

EXAMPLE 2

$j o b j$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	10	9	7	8
M_{2}	5	8	7	7
M_{3}	5	4	6	5
M_{4}	2	3	4	5

EXAMPLE 2 : ROW 1 OPERATION

job j	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	0	1
M_{2}	5	8	7	7
M_{3}	5	4	6	5
M_{4}	2	3	4	5

EXAMPLE 2 : ROW 2 OPERATION

$j o b j$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	0	1
M_{2}	0	3	2	2
M_{3}	5	4	6	5
M_{4}	2	3	4	5

EXAMPLE 2 : ROW 3 OPERATION

job j	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	0	1
M_{2}	0	3	2	2
M_{3}	1	0	2	1
M_{4}	2	3	4	5

EXAMPLE 2 : ROW 4 OPERATION

$j o b j$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	0	1
M_{2}	0	3	2	2
M_{3}	1	0	2	1
M_{4}	0	1	2	3

EXAMPLE 2 : AFTER ROW OPERATIONS

$M_{\text {mach } i}^{\text {job } j}$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	0	1
M_{2}	0	3	2	2
M_{3}	1	0	2	1
M_{4}	0	1	2	3

EXAMPLE 2 : COLUMN OPERATIONS

$j o b j$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	0	1
M_{2}	0	3	2	2
M_{3}	1	0	2	1
M_{4}	0	1	2	3

EXAMPLE 2 : COLUMN 4 OPERATION

$M_{\text {jach } i}$	J_{1}	J_{2}	J_{3}	J_{4}
M_{1}	3	2	0	0
M_{2}	0	3	2	1
M_{3}	1	0	2	0
M_{4}	0	1	2	2

EXAMPLE 2 : COVERING THE ELEMENTS BY LINES

EXAMPLE 2: ROW 4 OPERATION

EXAMPLE 2: ROW 4 OPERATION

\qquad	J_{1}	J_{2}	J_{3}	J_{4}
		"-".-		
M_{2}	0	3	2	1
				- - - - - - - - - -
M_{4}	-1	0	1	1

EXAMPLE 2 : ROW 2 OPERATION

\qquad	J_{1}	J_{2}	J_{3}	J_{4}
		"-".-		
M_{2}	0	3	2	1
	-			- - - - - - - - - -
M_{4}	-1	0	1	1

EXAMPLE 2 : ROW 2 OPERATION

EXAMPLE 2 : COLUMN 1 OPERATION

	J_{1}	J_{2}	J_{3}	J_{4}
- M'i' ${ }^{\text {- }}$ "	,	- ${ }^{2}$	--"0.	- - - 0 -
M_{2}	-1	2	1	0
	4	- $\boldsymbol{\theta}$	- - - - \mathbf{z}^{2}	- - . 0 -
M_{4}	-1	0	1	1

EXAMPLE 2 : COLUMN 1 OPERATION

	J_{1}	J_{2}	J_{3}	J_{4}
	,	- - . - - 2 "	-...-0	- - - - 0 -
M_{2}	θ	2	1	0
	2	θ	-2."	- 0 -
M_{4}	0	0	1	1

EXAMPLE 2: SOLUTION

J_{1}	4	J_{2}	J_{3}	J_{4}
M_{2}	0	2	0	0
M_{3}	2	0	2	0
M_{4}	0	0	1	1

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE 2 : SOLUTION 1

M_{1}	4	J_{1}	J_{3}	J_{4}
M_{2}	0	2	1	0
M_{3}	2	0	2	0
M_{4}	0	0	1	1

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

EXAMPLE 2 : SOLUTION 2

M_{1}	4	J_{2}	J_{3}	J_{4}
M_{2}	0	2	0	0
M_{3}	2	0	2	0
M_{4}	0	0	1	1

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PROBLEM 3-13

\square We cast the problem as an assignment with the
days being the machines and the courses being
the jobs
\square In order for the assignment problem to be
balanced, we introduce an additional course
whose costs are zero for each day

PROBLEM 3-13 : BALANCED MATCHING PROBLEM

machi mob M_{1}	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}
M_{2}	40	40	60	20	0
M_{3}	60	20	30	20	0
M_{4}	30	30	20	30	0
M_{5}	10	20	10	30	0

PROBLEM 3-13: COLUMN OPERATION

mach $i$$J_{1}{ }^{\text {job } j}$	J_{2}	J_{3}	J_{4}	J_{5}	
M_{1}	40	20	50	0	0
M_{2}	30	10	30	10	0
M_{3}	50	0	20	0	0
M_{4}	20	10	10	10	0
M_{5}	0	0	0	10	0

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PROBLEM 3－13 ：COVERAGE LINES

		J2	$]_{3}$	$\sqrt{4}$	$\sqrt{5}$
$\square \square \square \square 1 / 4 \square \square \square \square \square$	■■■■ ¢¢пппп			■■■■■ฏロ■■■■	
	30	10		10	
$\square \square \square \square \sqrt[4]{14} \square^{\square} \square \square$	■■■■ ¢5ை ■ ■ ■	■■■■■母■■■■		■■■■■¢■■■■■	
		10	10	10	
$\square \square \square \square \sqrt[145]{5} \square \square \square$	■■■■■ ¢пппロா			■■■■■乌ロロ■■■■	

PROBLEM 3－13 ：ROW OPERATION

		J2	$]_{3}$	$\sqrt{4}$	$\sqrt{5}$
$\square \square \square \square 1 / 4 \square \square \square \square \square$	■■■■ ¢¢пппп			■■■■■ฏロ■■■■	
	30	10		10	
$\square \square \square \square \sqrt[4]{14} \square^{\square} \square \square$	■■■■ ¢5ை ■ ■ ■	■■■■■母■■■■		■■■■■¢■■■■■	
		10	10	10	
$\square \square \square \square \sqrt[145]{5} \square \square \square$	■■■■■ ¢пппロா			■■■■■乌ロロ■■■■	

PROBLEM 3-13 : ROW OPERATION

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PROBLEM 3-13 : COLUMN OPERATION

ECE 307 © 2005-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PROBLEM 3-13: SOLUTION

job j mach i	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}
M_{1}	40	20	50	0	10
M_{2}	20	0	20	0	0
M_{3}	50	0	20	0	10
M_{4}	10	0	0	0	0
M_{5}	0	0	0	10	10

PROBLEM 3-13 : SOLUTION

job j mach i	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}
M_{1}	40	20	50	0	10
M_{2}	20	0	20	0	0
M_{3}	50	0	20	0	10
M_{4}	10	0	0	0	0
M_{5}	0	0	0	10	10

